If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+y^2=28
We move all terms to the left:
y^2+y^2-(28)=0
We add all the numbers together, and all the variables
2y^2-28=0
a = 2; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·2·(-28)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*2}=\frac{0-4\sqrt{14}}{4} =-\frac{4\sqrt{14}}{4} =-\sqrt{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*2}=\frac{0+4\sqrt{14}}{4} =\frac{4\sqrt{14}}{4} =\sqrt{14} $
| x/1.64=x-0.16 | | 3x+15=7x-15 | | 12-20a=8-9a | | 1.2(3x-3.5)=4.8 | | 12+4x=8(x-1) | | -3k^2-6-12=-9 | | (x-5)^(5-2)=243 | | 4=w/4+8 | | 5=80-20x | | 4x+1=-(x-9) | | 2r+96=10r-8 | | 19x+20x=210 | | 43-19=3(x-9) | | 1/4x^2-2x+4=0 | | 740=+u5823742 | | 7Z+9=97-z | | 1/7x+1/9x+1/7=89/63 | | V=-16+10t | | x^2+172=0 | | x^2+172=0 | | 5c=7(2c+3)-12 | | W^2-4w=-44 | | 3(X+2)-10=4x+x | | 66=6x+42 | | 5=-4.9t^2+24.5t+1 | | -8.5=-6x+2 | | 2(x+13)=3x-34 | | n+3(5n+3)=41 | | y=-0.5+72 | | 20=n/4= | | 2^3x=29 | | 4x-3+3x-1=51 |